

Doug Sinclair, Cordell Grant,
August 5, 2021, Document, Rev 1.1

1 Scope ... 5
2 Mechanical .. 6

2.1 Overall Dimensions .. 6
2.2 Mounting Holes .. 6
2.3 Mass Properties .. 7
2.4 Remove Before Flight .. 8

3 Environmental ... 9
3.1 Storage .. 9
3.2 Thermal .. 9
3.3 Pressure .. 9
3.4 Vibration ... 9

4 Electrical ... 10
4.1 Polarized Nano ... 10
4.2 Programming Header ... 10

5 Signals ... 11
5.1 Power In/Out .. 11
5.2 Ground .. 11
5.3 SDA, SCL .. 11
5.4 C2CK .. 11
5.5 Power Architecture ... 12
5.6 Regenerative Braking ... 12

6 Protocol Layer 2 (Data Link Layer) .. 13
6.1 I2C... 13
6.2 Asynchronous Serial .. 13

7 Protocol Layer 3 (Network Layer) .. 14
7.1 SLIP Encoding ... 14
7.2 I2C Encapsulation ... 14

8 Protocol Layer 4 (Transport Layer) .. 16
8.1 NSP Message Format ... 16
8.2 NSP Addresses ... 16
8.3 Message Control Field ... 16
8.4 Data Field ... 17
8.5 Message CRC ... 17
8.6 Error Conditions ... 17

9 Protocol Layer 5 (Session Layer) ... 18
9.1 Operating Modes .. 18

9.1.1 Bootloader to Application Transition ... 18
9.1.2 Application to Bootloader Transition ... 18

9.2 Test Scripts ... 18
9.3 Byte Order .. 18
9.4 Command Codes .. 18
9.5 PING (0x00) ... 19

9.5.1 Command Format ... 19
9.5.2 Reply Format .. 19

9.6 INIT (0x01) .. 19

9.6.1 Command Format ... 19
9.6.2 Reply Format .. 19

9.7 PEEK (0x02) .. 20
9.7.1 Command Format ... 20
9.7.2 Reply Format .. 20

9.8 POKE (0x03) .. 20
9.8.1 Command Format ... 20
9.8.2 Reply Format .. 20

9.9 DIAGNOSTIC (0x04) .. 20
9.9.1 Command Format ... 20
9.9.2 Reply Format .. 20

9.10 CRC (0x06) .. 21
9.10.1.1 Command Format .. 21
9.10.1.2 Reply Format ... 21

9.11 READ FILE (0x07) .. 21
9.11.1 Command Format ... 21
9.11.2 Reply Format .. 21

9.11.2.1 Mode Reply Structure .. 21
9.11.2.2 Normal Reply Structure ... 21

9.12 WRITE FILE (0x08) .. 22
9.12.1 Command Format ... 22

9.12.1.1 Mode Store Structure ... 22
9.12.1.2 Normal Store Structure .. 22

9.12.1 Reply Format .. 22
9.12.1.1 Mode Reply Structure .. 22
9.12.1.2 Normal Reply Structure ... 22

9.13 READ EDAC (0x09) .. 22
9.13.1 Command Format ... 22
9.13.2 Reply Format .. 23

10 Protocol Layer 6 (Presentation Layer) .. 24
10.1 Fault State ... 24
10.2 Memory Map .. 24
10.3 Diagnostics ... 25

10.3.1 Reset Reason ... 25
10.3.2 Reset Count ... 25
10.3.3 Framing Error .. 25
10.3.4 Runt Packet ... 26
10.3.5 Oversize Packet ... 26
10.3.6 Bad CRC ... 26

10.4 EDAC Memory ... 26
10.4.1 Command Value ... 28
10.4.2 GROUND ... 28
10.4.3 VDD .. 28
10.4.4 TEMPERATURE ... 28
10.4.5 LDO .. 28
10.4.6 VSENSE ... 28

10.4.7 SPEED .. 28
10.4.8 MOMENTUM .. 28
10.4.9 SEU_COUNT ... 28
10.4.10 FAULT_STATE .. 28
10.4.11 HALL_DIGITAL .. 29
10.4.12 CONTROL_TIME .. 29
10.4.13 SPEED_[P|I|D]_GAIN .. 29
10.4.14 MIN_GAIN_SPEED, MAX_GAIN_SPEED ... 29
10.4.15 INERTIA ... 29
10.4.16 GAIN_SCHEDULE[1..4] ... 29
10.4.17 CONTROL_TYPE .. 30
10.4.18 MAX_SPEED_AGE ... 30
10.4.19 LIMIT_SPEED1 .. 30
10.4.20 LIMIT_SPEED2 .. 31
10.4.21 LIMIT_VOLTAGE ... 31
10.4.22 PREVIOUS_SPEED ... 31
10.4.23 SPEED_INTEGRATOR ... 31
10.4.24 SPEED_LAST_ERROR ... 31
10.4.25 ACCEL_TARGET .. 31
10.4.26 TEST_VOLTAGE .. 31
10.4.27 TORQUE_[T0..T4] ... 32
10.4.28 MODE ... 32
10.4.29 HALL_IMPOSSIBLE ... 32
10.4.30 HALL_SKIP ... 32
10.4.31 CONTROL_OVERFLOW .. 32
10.4.32 SFFT_STEP_NUMBER ... 32
10.4.33 SFFT_TELEM_COUNT ... 32
10.4.34 MODE_MONITOR .. 33
10.4.35 FRICTION_DONE ... 33

10.5 Command Modes .. 33
10.5.1 IDLE ... 34
10.5.2 PWM ... 34
10.5.3 VOLTAGE .. 34
10.5.4 SPEED .. 34
10.5.5 PWM_H[1..6] ... 34
10.5.6 VOLTAGE_H[1..6] .. 34
10.5.7 ACCEL ... 34
10.5.8 MOMENTUM .. 35
10.5.9 TORQUE .. 35
10.5.10 BURNIN ... 35
10.5.11 SFFT .. 35
10.5.12 LIFE .. 35
10.5.13 STORE_FILES ... 35
10.5.14 DEFAULT_FILES .. 35
10.5.15 PWM_P[0..2] .. 35
10.5.16 MEASURE_FRICTION ... 36

10.5.17 MEASURE_STICTION ... 36
10.5.18 SOAK .. 36
10.5.19 REPEAT .. 36
10.5.20 COMPLETE .. 36
10.5.21 AUX1 .. 36
10.5.22 AUX2 .. 36

1 Revision Notes
This revision of the document contains the following changes relative to the previously
released version:

• Added this section. All other section numbers incremented by 1 and respaced.
• Updated Section 2 Scope to correct the voltage specified in the part number.
• Updated Section 3.2 Mounting to adjust the recommended clearance between the

wheel and mounting plate, and to provide more detailed recommendations.
• Updated Section 3.4 to eliminate a conflict with the mounting recommendations.
• Updated Section 4.4 to include vibration qualification specification.

2 Scope
This document details the mechanical, electrical and software interfaces for the smallest
Sinclair Interplanetary reaction wheels. At present these include:

• RW-0.003-7-I2C

3 Mechanical
3.1 Overall Dimensions

The axes for the reaction wheel are defined as shown in the above figure. The rotation
arrow shows the direction of wheel rotation that is considered positive wheel speed.
Rotation in the opposite direction is considered negative wheel speed.

3.2 Mounting
The wheel is mounted using the two unused corner holes as shown below. These holes
are sized for #2-56 screws. The mounting screws should be torqued to at least 40 oz-in. If
higher torque is desired, superalloy (A286) fasteners can be used. During vibration
qualification of the design, a torque of 96 oz-in was applied.

+X

+Y

Positive
Wheel
Rotation

+Z

+Y

Of critical importance when mounting is that the wheel be supported beneath the two
mounting points using a spacer or boss having a height of at least 3.5mm. Maintaining a
gap under the wheel avoids warping of the wheel when the mounting screws are
tightened. Such warping can impede proper function of the wheel.

Note, using a machined boss rather than a spacer is highly recommended for any
application that will experience high vibrational loading (e.g. qualification, flight).
Spacers offer reduced stability and require longer screws. Such an approach should only
be used for laboratory-based applications (e.g. flatsat). If using gap filler or thermal pad
under the wheel, please consult the factory for additional instructions.

3.3 Mass Properties
The mass of the complete wheel assembly is approximately 47.5g. The mass center is
close to the geometric center.

3.4 Remove Before Flight
There are no necessary remove-before-flight elements. The bearings are covered with
Kapton circles. These may be removed at the user’s option, if the bearings are otherwise
protected.

4 Environmental
4.1 Storage
The wheel must be stored in a clean environment to keep dust out of the bearings. The
humidity must be kept low to prevent corrosion of the steel rotor. The wheel may be
stored in a sealed bag with desiccant.

4.2 Thermal
Table 1: Allowable Temperature Range
Survival Temperature -40°C to +125°C
Operating Temperature (short term) -40°C to +100°C at interface
Operating Temperature (long term) -20°C to +70°C at interface
Table 1 shows the allowed temperature range for the wheel. Short term operating
temperatures are permitted for periods of hours to days, while long term operating
temperatures are permitted for the many years of a mission.

4.3 Pressure
The wheel will operate in sea-level atmosphere and in hard vacuum. It has not been
qualified to operate at high altitude atmospheres, and should not be powered during
ascent unless additional testing is performed to show that there is no danger of arcing.

All materials meet the standard outgassing requirements of TML < 1%, CVCM < 0.1%.

4.4 Vibration
The wheel is designed to survive typical launch environments. It has been qualified to
NASA GEVS levels (14.1Grms for 2 minutes/axis).

5 Electrical
5.1 Polarized Nano
The wheel is fitted with a 4 contact polarized nano connector. The pinouts for these
connectors are liable to confusion. For clarity, use mating connector A79600-001 from
Omnetics. The wire colours of that mating connector are:

Table 2: Polarized Nano Connector
Wire Name
Black Power In/Out
Brown Ground
Red SDA
Orange SCL

5.2 Programming Header
There is a single plated through hole on the PCB that is accessed with a clip-lead during
fabrication. It carries the signal “C2CK”, and is used for initial software load.

6 Signals
6.1 Power In/Out
Absolute Maximum -0.3 V to +11.0 V
Operating Range +5.0 V to +8.8 V
Front-end Capacitance 220 nF
Total Capacitance 43 uF
ESD Protection Front end capacitor ESD qualified per HBM-AEC

Q200-002.

The Power In/Out signal is used to power the reaction wheel. Power normally flows into
the wheel, but during regeneration it is possible for power to flow out.
At +8.82 V nominal the overvoltage protection feature will reset the wheel from
application to bootloader software. See the fault protection section for more information.

6.2 Ground
The ground signal is the return for the power signal, and is the reference for all of the
other signals. Ground is connected to chassis through a bleed resistor (TBD) and RF
capacitor (TBD).

6.3 SDA, SCL
Absolute Maximum -0.5 V to +5.6 V
Input High Voltage > 2.3 V
Input Low Voltage < 1.0 V
Output Low Voltage < 0.9 V @ 3 mA
Pullup Current 330 uA @ 0 V
ESD Rating IEC 61000-4-2 model

±30 kV contact discharge
±30 kV air discharge

SDA and SCL comprise an I2C communications bus. The signals are not loaded if the
wheel is powered down. The SCL signal is also used during factory programming.

6.4 C2CK
Absolute Maximum -0.5 V to +5.6 V when wheel is powered

-0.5 V to +2.5 V when wheel unpowered
Input High Voltage > 2.2 V
Input Low Voltage < 0.77 V
Pullup Current 3.3 mA @ 0 V
ESD Rating IEC 61000-4-2 model

±30 kV contact discharge
±30 kV air discharge

C2CK is used during factory programming.

6.5 Power Architecture

Figure 1: Power Architecture
The wheel has a simple power architecture with only one power input. All of the voltage
rails are produced by DC/DC conversion, giving greater efficiency.

6.6 Regenerative Braking
The wheel makes use of regenerative braking when slowing the rotor under moderate
torque. This will result in the wheel consuming a net negative amount of power, pushing
current back out onto the spacecraft power bus. The spacecraft power system design
must be able to deal with this.
In an emergency, if the power line becomes disconnected from the power system (such as
if turned off via a relay switch) regeneration will increase the voltage at the wheel until
the ~8.82 V safety threshold is reached. This will cause the wheel to reset and cease
regeneration.

V+A

GND

EMI
Filter

To motor
drive

+3.3 V DC/DC

1 MΩ +
100 nF

7 Protocol Layer 2 (Data Link Layer)
7.1 I2C

The wheel uses a standard I2C communications bus. It acts as a bus slave, but will
perform clock-stretching as needed.

If SCL is held low for 25 msec the interface will reset, as described in the SMBus
specification.

7.2 Asynchronous Serial
Asynchronous serial is supported by the reaction wheel hardware, but not implemented
by its software at this time. If used, the SDA signal becomes TX and the SCL signal
becomes RX.

8 Protocol Layer 3 (Network Layer)
NSP is the Nanosatellite Protocol, originally developed at UTIAS/SFL for use on the
CanX nanosatellites. This in turn is descended from the Simple Serial Protocol (SSP)
used by UTIAS/SFL and Dynacon on the MOST and CHIPSAT spacecraft as well as the
Dynacon reaction wheels in the wider market.
The reaction wheel uses NSP messages for all communication.

8.1 SLIP Encoding
NSP messages are encoded for transmission on asynchronous or I2C serial channels use
SLIP framing, as described in RFC 105. This is required in order to indicate the
beginning and end of NSP messages.

Table 3: SLIP Framing Special Characters
FEND 0xC0
FESC 0xDB
TFEND 0xDC
TFSEC 0xDD

Whenever FEND would occur within the message it is replaced by two bytes: FESC
TFEND. Whenever FESC would occur within the message it is replaced by FESC
TFESC.

8.2 I2C Encapsulation
NSP messages are encapsulated for transmission over I2C links. The NSP address of a
device is also used as its I2C address – note that I2C addresses are only 7 bits long, while
NSP implemented on other links will accept up to 8 bits.

Table 4: NSP Telecommand over I2C with no Reply
Transmitter Data Notes
OBC START
OBC Slave address, Write Slave ACK indicates slave receiving
OBC Source address
OBC Message Control Field Poll bit = 0
OBC Outgoing data (0 – N bytes)
OBC 16-bit CRC
OBC FEND
OBC STOP
The table above shows the OBC (Onboard computer), which is also the bus master,
sending a telecommand to a wheel where no reply is required. The message is SLIP
framed, except that the leading FEND is omitted as it is redundant – I2C provides an out-
of-band frame start signal.

The destination address is not transmitted. Instead, the transaction begins with the slave
address and the write bit, in accordance with the I2C specification. Note that the CRC is
computed based on the NSP message, not on the bytes transmitted over the I2C link.

Table 5: NSP Telecommand over I2C with Reply
Transmitter Data Notes

OBC START
OBC Slave address, Write Slave ACK indicates slave receiving
OBC Source address
OBC Message Control Field Poll bit = 1
OBC Outgoing data (0 – N bytes)
OBC 16-bit CRC
OBC FEND
OBC START
OBC Slave address, Read Slave ACK indicates slave receiving
Wheel Message Control Field Poll bit = 1
Wheel Reply data (0 – N bytes)
Wheel 16-bit CRC
Wheel FEND OBC sends NACK to reclaim control

of SDA
OBC STOP
The table above shows the OBC sending a telecommand to a wheel where a reply is
required. Instead of sending a STOP at the end of the telecommand, the OBC sends a
repeated START. To comply with the I2C specification it must then re-send the slave
address in read mode.
The slave then sends the reply message. This is SLIP framed, but as before the leading
FEND is omitted. The destination and source address are also both omitted. An I2C
transaction is atomic, so there can be no question of which telecommand produced which
reply. Even though these fields are omitted, the CRC is still computed based on the
entire NSP message in the normal fashion.

9 Protocol Layer 4 (Transport Layer)
9.1 NSP Message Format

Table 6: NSP Message Fields
Length Field
1 byte Destination Address
1 byte Source Address
1 byte Message Control Field
0 or more bytes Data Field
2 bytes Message CRC

Each NSP message has the format shown above. The shortest possible messages are 5
bytes (with zero data, not counting framing).
The wheel supports a maximum data length of 260 bytes, giving a total message length of
265 bytes. Note that network-layer framing may add additional bytes to the message as it
is transmitted.

9.2 NSP Addresses
All NSP messages contain a destination and a source address. A reply message will be
sent with a destination address equal to the source address of its command message.
Similarly, the source address will be set equal to the destination address from the
command.
The user is free to pick one or more NSP addresses for flight computers and other units
that may talk to the wheel. Avoid choosing the SLIP framing characters FEND (0xC0)
and FESC (0xDB), as well as the reserved address 0x00. By convention the flight
computer would normally use NSP address 0x11.
The wheel pays no particular attention to the source address of commands, and will
accept commands from any unit on the bus.

9.3 Message Control Field
Table 7: Message Control Field

Bit 7 (MSB) “Poll/Final” Bit
Bit 6 “B” Bit
Bit 5 “ACK” Bit
Bits 4 – 0 Command code

The message control field packs four values into a single byte. The command code is an
enumerated value between 0x00 and 0x1F that determines how the data field should be
interpreted.
The “ACK” bit is ignored on commands coming into the wheel. On telemetry reply
messages sent by the wheel it is set to indicate successful execution of the command, or
cleared to indicate that the command cannot be executed.
The “B” bit is copied unchanged from a command message into its reply message. The
wheel does not use it internally.

The “Poll/Final” bit is interpreted differently for command and telemetry messages. For
a command, the bit is “Poll”. If it is set to ‘1’ then the wheel will generate a telemetry
message in reply. If it is cleared to ‘0’ then the command will be executed, but no
response telemetry message will be sent.
For a telemetry message, the bit is “Final”. If a reply consists of a single telemetry
message, then the bit is set to ‘1’. If a reply is too large to fit into a single message then
the final message has the bit set to ‘1’ and the others have the bit cleared to ‘0’.

9.4 Data Field
The interpretation of the data field is dependent on the command code in the message
control field. Some command codes may have no data, some may require a certain fixed
number of data bytes, and some can accept a variable data length.

9.5 Message CRC
Each NSP message contains a 2 byte (16-bit) CRC to guard against errors in
transmission. The 16-bit CCITT polynomial is used: x^16 + x^12 + x^5 + 1. The initial
shift register value is 0xFFFF. Bytes are fed into the CRC computation starting with the
destination address, and concluding with the last byte of the data field. Within a byte,
bits are fed in LSB first.
The following fragment of C code, courtesy of Henry Spencer, illustrates how the CRC
can be computed.

#define POLY 0x8408 /* bits reversed for LSB-first */
unsigned short crc = 0xffff;
while (len-- > 0) {

unsigned char ch = *bufp++;
for (i = 0; i < 8; i++) {

crc = (crc >> 1) ˆ (((ch ˆ crc) & 0x01) ? POLY : 0
);
ch >>= 1;

}
}

9.6 Error Conditions
The wheel will ignore NSP command messages where the destination address does not
correspond to its own NSP address. NSP messages with invalid CRC, invalid
encapsulation, too short or too long are also ignored. In none of these cases will any
reply message be generated.
If an NSP command message is in error due to an unknown command code, or if the data
field is not consistent with the requirements of the command code, and if the “Poll” bit is
set, then a NACK reply message will be generated. This message will be the same length
as the command message, and contain the same data field. The command code will be
the same, as will the “B” bit. The “ACK” bit will be cleared to ‘0’.

10 Protocol Layer 5 (Session Layer)
10.1 Operating Modes

Figure 2: Mode Transition Diagram
Power-on starts the unit in bootloader mode.

10.1.1 Bootloader to Application Transition
The wheel will transition from bootloader to application mode upon receipt of an “INIT
0x00001000” command.

10.1.2 Application to Bootloader Transition
The wheel will transition from application mode to bootloader mode under the following
conditions:

• An “INIT” command with no data is received.
• The Power In/Out pin exceeds ~8.82 V.

10.2 Test Scripts
The reaction wheel contains a number of preprogrammed test scripts. These are used in
the factory for initial characterization and pass/fail acceptance testing. They can also be
used by customers to verify the health of the wheel during integration and on-orbit.
The exact contents of the test scripts is not documented here, to avoid the danger that it
might become out of sync with the actual software. The rw-bit-term program should be
used to record and interpret test script output. It is automatically synced to the wheel
onboard software.

10.3 Byte Order
All multi-byte values transported in the data field of NSP messages are in little-endian
format. That is, the least-significant byte is stored first, and the most-significant byte is
stored last.

10.4 Command Codes
Table 8: Command Codes

Command Code Command Bootloader Application
0x00 PING Yes Yes
0x01 INIT Yes Yes
0x02 PEEK Yes Yes
0x03 POKE Yes Yes
0x04 DIAGNOSTIC Yes Yes

0x06 CRC Yes Yes
0x07 READ FILE No Yes

Bootloader Application

0x08 WRITE FILE No Yes
0x09 READ EDAC No Yes

The table above shows the command codes that can be used by the host spacecraft to
communicate with the wheel.

10.5 PING (0x00)
The PING command is typically used during testing to verify communications. Incoming
data is ignored. The reply packet contains a human-readable text string containing:

• The type of device and the manufacturer

• The name, and compile time and date of the software that is currently running on
the target processor.

10.5.1 Command Format
Bytes 0 – N Zero or more bytes, ignored by the NSP module

10.5.2 Reply Format

Bytes 0 – N Human-readable ASCII string. No NULL termination.

10.6 INIT (0x01)
The INIT command is used to change the operating mode of a wheel. In general, and
INIT with data is interpreted as an address to jump to. An init with no data is interpreted
as a reset or exit command. In all cases, if a reply has been requested (“Poll” bit set to
‘1’) then the reply will be sent before the processor state is changed.
The wheel will respond to an INIT with no data by completely resetting the device,
returning to bootloader mode. If it is in bootloader mode, it will respond to an INIT with
4 bytes of data by running an Application Module at the corresponding 32-bit start
address. By convention, devices will ship from the factory with the supervisor processor
primary application program stored at address 0x00001000. Thus, a command of INIT
0x00001000 will start the default behaviour.

10.6.1 Command Format
Reboot command:
No payload bytes

Application start command:
Bytes 0 – 3 32-bit integer address of program to start

10.6.2 Reply Format
Reboot reply:
No payload bytes

Application start reply:
Bytes 0 – 3 32-bit integer address of program to be started

10.7 PEEK (0x02)
The PEEK command is used to read the device memory. The wheel processor has no
restriction on the alignment or length of a peek.

10.7.1 Command Format
Bytes 0 – 3 32-bit address to start peeking data
Byte 4 Number of bytes to read. A value of 0 indicates that 256 bytes should

be read.

10.7.2 Reply Format
Bytes 0 – 3 32-bit address of the start of data
Bytes 4 – N One or more bytes read from the target memory

10.8 POKE (0x03)
The POKE command is used to write the device memory. The wheel will only permit a
POKE into flash memory when in bootloader mode. Each 512 byte block of flash
memory has a lifetime of only 20,000 write cycles. One cycle is consumed for each
POKE command that accesses a particular block. This lifetime is more than sufficient for
occasional software patches, but the user is cautioned that a looping sequence of POKE
commands could easily wear out a block.
A single POKE command cannot span two flash blocks. This restriction comes from the
SMBus 25 msec clock stretching limit – we cannot erase and program two flash blocks in
this time.

10.8.1 Command Format
Bytes 0 – 3 32-bit address to start poking data
Byte 4 – N 1 - 256 bytes to write to the target memory

10.8.2 Reply Format
Bytes 0 – 3 32-bit address where data write began
Bytes 4 – N 1 – 256 bytes written to the target memory

10.9 DIAGNOSTIC (0x04)
The DIAGNOSTIC command gathers error count data from the wheel.

10.9.1 Command Format
Byte 0 Address of the diagnostic channel to read, as an 8-bit integer

10.9.2 Reply Format
Byte 0 Address of the diagnostic channel read, as an 8-bit integer

Bytes 1 - 4 Diagnostic value from the addressed channel, as a 32-bit integer

10.10 CRC (0x06)
CRC command is used to calculate a checksum on an area of flash memory. The CRC
uses the same 16-bit polynomial, with the same bit order, as is used for NSP messages.
The largest possible range is 0x0000 to 0xFBFF. This takes 17 msec to compute. Thus
the computation is always compatible with the SMBus 25 msec clock stretch limit.

10.10.1.1 Command Format
Bytes 0 – 3 Address of the first byte to CRC as 32-bit integer
Bytes 4 – 7 Address of the last byte to CRC as 32-bit integer

10.10.1.2 Reply Format
Bytes 0 – 3 Address of the first byte in CRC as 32-bit integer
Bytes 4 – 7 Address of the last byte in CRC as 32-bit integer
Bytes 8 – 9 CRC result as 16-bit integer

10.11 READ FILE (0x07)
The Read File command returns one or more “files”, which are four consecutive bytes of
EDAC protected memory. A read from address 0 is a special case, and an additional
mode byte is returned.

10.11.1 Command Format
Bytes 0 EDAC address divided by 4 (0 – 255). 0 for mode, 1 – 255 for

normal.

10.11.2 Reply Format
Bytes 0-4 or 0-5 File Reply structure. The first byte of the structure determines its

type.

10.11.2.1 Mode Reply Structure
Byte 0 0
Byte 1 Command type read from EDAC
Bytes 2 - 5 Command value read from EDAC

10.11.2.2 Normal Reply Structure
Byte 0 Non-zero EDAC address divided by 4 (1 – 255)
Bytes 1 - 4 EDAC data bytes read from memory

10.12 WRITE FILE (0x08)
The Write File command stores one “files”, which are four consecutive bytes of EDAC
protected memory. A write to address 0 is a special case, and an additional mode byte is
stored.
If a Write File command fails due to improper formatting then no modification to EDAC
memory is made.

10.12.1 Command Format
Bytes 0-N One File Store structures. The first byte of each structure determines

its type.

10.12.1.1 Mode Store Structure
Byte 0 0
Byte 1 Command type to store
Bytes 2 - 5 Command value to store

10.12.1.2 Normal Store Structure
Byte 0 Non-zero EDAC address divided by 4 (1 – 255)
Bytes 1 - 4 Data bytes to write to EDAC memory

10.12.1 Reply Format
Bytes 0-4 or 0-5 File Reply structures. The first byte of each structure determines its

type.

10.12.1.1 Mode Reply Structure
Byte 0 0
Byte 1 Command type read from EDAC
Bytes 2 - 5 Command value read from EDAC

10.12.1.2 Normal Reply Structure
Byte 0 Non-zero EDAC address divided by 4 (1 – 255)
Bytes 1 - 4 EDAC data bytes read from memory

10.13 READ EDAC (0x09)
The Read EDAC command returns bytes from EDAC memory. The read process is
atomic.

10.13.1 Command Format
Bytes 0 – 1 EDAC address to start reading
Byte 2 Number of bytes to read. A value of 0 indicates that 256 bytes should

be read.

10.13.2 Reply Format
Bytes 0 – 1 EDAC address where reading started
Bytes 2 – N The data bytes read from EDAC memory

11 Protocol Layer 6 (Presentation Layer)
11.1 Fault State
Once in application mode, the reaction wheel may exist in or out of fault state. It starts
out of fault state. Fault state is entered by the following conditions:

• Motor drive FET temperature exceeding ~160 °C.
• Motor drive current exceeding ~2 A.
• Rotor speed exceeding LIMIT_SPEED2

In the fault state the motor is not driven. Fault state is exited by the following condition:
• Command to IDLE

11.2 Memory Map
Table 9: Supervisor Memory Map

Address Range Function
0x00000000 – 0x00000FFF Bootloader program memory
0x00001000 – 0x0000F3FF Program memory (flash)
0x0000F400 – 0x0000F7FF Stored parameters (flash)
0x0000FA00 – 0x0000FBFF Bootloader program memory
0x0000FC00 – 0x0000FFBF Reserved area, access forbidden
0x0000FFC0 – 0x0000FFCF 128-bit UUID
0x01000000 – 0x010000FF 256 B IRAM (RAM)
0x02000000 – 0x02000FFF 4 kB XRAM (RAM)
0x03000080 – 0x030000FF 128 B SFR (RAM) Bank 00h
0x03100080 – 0x031000FF 128 B SFR (RAM) Bank 10h
0x03200080 – 0x032000FF 128 B SFR (RAM) Bank 20h
0x03300080 – 0x033000FF 128 B SFR (RAM) Bank 30h

The supervisor memory can be directly accessed with PEEK and POKE commands, and
CRCs calculated with CRC commands. It is represented as a single 32-bit memory
space, sparsely populated.
The first 4 kB of program memory contain the bootloader. These are protected against
POKEs so that the bootloader cannot be accidentally changed. The next 57 kB contains
the supervisor application program. A sequence of POKE commands in bootloader mode
can be used to load new application programs.
The bootloader memory cannot be read by the application program, and so PEEK or CRC
commands to those regions will fail if not in bootloader mode.

The processor has two RAM areas. There is little need for a user to touch these.
There are four banks of Special Function Registers (SFRs). These should not be POKEd
without knowing exactly what is going on. Even PEEKing some of these registers can
have unexpected side effects.

11.3 Diagnostics
The diagnostics contain a series of read-only integers that relate to the health of the
wheel.
Table 10: Diagnostic Channels
Diagnostic Channel Name

0x00 Reset Reason
0x01 Reset Count
0x02 Framing Errors
0x03 Runt Packets
0x04 Oversize Packets
0x05 Bad CRC

11.3.1 Reset Reason
The reset reason is an enumerated type, describing the reason for the most recent reset of
the wheel processor.

Table 11: Reset Reason Codes
Reset Reason Code Meaning

0 Power cycle. The wheel has either been freshly turned on, or the
input voltage has drooped below the minimum operating voltage.

1 Realtime clock. This should not happen, as no realtime clock is
fitted to this hardware.

2 Flash error. An illegal attempt has been made to read or write
flash memory.

3 Comparator reset. This occurs if the Power In/Out pin exceeds
8.82 V.

4 Watchdog reset. The default application program does not use
the watchdog timer, but if it somehow does get turned on this is
the reset that it would generate.

5 Missing clock. The clock source for the processor stopped
ticking.

6 Pin reset. The external C2CK signal has been pulled low. This
should not happen to an integrated wheel.

7 Software reset. The most likely cause is that an INIT command
has been received with no data, forcing a reset.

11.3.2 Reset Count
The reset count contains the number of wheel processor resets since the last power cycle
reset. Immediately after a power cycle the reset count will read as 0. After the first non-
power-cycle reset it will read 1.

11.3.3 Framing Error
A framing error is declared if an NSP message is incorrectly encapsulated on the
communications link. This would be any time a FESC character is seen that is not
immediately followed by TFESC or TFEND.

11.3.4 Runt Packet
A runt packet is a NSP message that is less than 5 bytes long. Such a fragment cannot be
a properly formed NSP message since it cannot contain a source and destination address,
control field, and CRC.

11.3.5 Oversize Packet
An oversize packet is one that has too many bytes in the data field. Packets that are too
long cannot fit into the allocated message buffers and so they must be rejected. See
section 9.1 for the length constraints.

11.3.6 Bad CRC
This count is incremented every time a properly formatted (in length and framing) NSP
message is received where the CRC field does not match with the computed CRC, and
where the first byte is equal to the NSP address of the wheel.

11.4 EDAC Memory
The wheel supports 1024 bytes of EDAC protected memory. These are implemented
using software-based triple-redundant storage into conventional SRAM cells. EDAC
memory can be read with READ EDAC and READ FILE commands, and written with
WRITE FILE commands. The MODE_STORE command will save EDAC memory into
non-volatile flash memory.
Table 12: EDAC Memory Contents
EDAC Address File

Address
Function Format

0x000 – 0x003 0x00 Command Value Command
Dependent

0x004 – 0x007 0x01 GROUND Volts (IEEE-754
float)

0x008 – 0x00B 0x02 VDD Volts (IEEE-754
float)

0x00C – 0x00F 0x03 TEMPERATURE °C (IEEE-754 float)
0x010 – 0x013 0x04 LDO Volts (IEEE-754

float)
0x014 – 0x017 0x05 VSENSE Volts (IEEE-754

float)
0x054 – 0x057 0x15 SPEED Rad/sec (IEEE-754

float)
0x058 – 0x05B 0x16 MOMENTUM N-m/sec (IEEE-754

float)
0x060 – 0x063 0x18 SEU_COUNT counts (IEEE-754

float)
0x064 – 0x067 0x19 FAULT_STATE Enum in IEEE-754

float
0x06C – 0x06F 0x1B HALL_DIGITAL Binary value in

IEEE-754 float

0x070 – 0x073 0x1C CONTROL_TIME Timer ticks (IEEE-
754 float)

0x080 – 0x083 0x20 SPEED_P_GAIN Amps / rad / sec
(IEEE-754 float)

0x084 – 0x087 0x21 SPEED_I_GAIN Amps / rad (IEEE-
754 float)

0x088 – 0x08B 0x22 SPEED_D_GAIN Amps / rad / sec2
(IEEE-754 float)

0x094 – 0x097 0x25 MAX_GAIN_SPEED Rad/sec (IEEE-754
float)

0x098 – 0x09B 0x26 MIN_GAIN_SPEED Rad/sec (IEEE-754
float)

0x0A0 – 0x0A3 0x28 INERTIA kg-m2 (IEEE-754
float)

0x0A8 –
0x0AB

0x2A GAIN_SCHEDULE1 (IEEE-754 float)

0x0AC –
0x0AF

0x2B GAIN_SCHEDULE2 (IEEE-754 float)

0x0B0 – 0x0B3 0x2C GAIN_SCHEDULE3 (IEEE-754 float)
0x0B4 – 0x0B7 0x2D GAIN_SCHEDULE4 (IEEE-754 float)
0x0BC – 0x0BF 0x2F CONTROL_TYPE (IEEE-754 float)
0x0C8 – 0x0CB 0x32 MAX_SPEED_AGE sec (IEEE-754)
0x0CC – 0x0CF 0x33 LIMIT_SPEED1 Rad/sec (IEEE-754)
0x0D0 – 0x0D3 0x34 LIMIT_SPEED2 Rad/sec (IEEE-754)
0x0D4 – 0x0D7 0x35 LIMIT_VOLTAGE Volts (IEEE-754)
0x100 – 0x103 0x40 PREVIOUS_SPEED Rad/sec (IEEE-754)
0x104 – 0x107 0x41 SPEED_INTEGRATOR Amps (IEEE-754)
0x108 – 0x10B 0x42 SPEED_LAST_ERROR Rad/sec (IEEE-754)
0x10C – 0x10F 0x43 ACCEL_TARGET Rad/sec (IEEE-754)
0x110 – 0x113 0x44 TEST_VOLTAGE Volts (IEEE-754)
0x12C – 0x12F 0x4B TORQUE_T0 Nm (IEEE-754)
0x130 – 0x133 0x4C TORQUE_T1 Nm (IEEE-754)
0x134 – 0x137 0x4D TORQUE_T2 Nm (IEEE-754)
0x138 – 0x13B 0x4E TORQUE_T3 Nm (IEEE-754)
0x13C – 0x13F 0x4F TORQUE_T4 Nm (IEEE-754)
0x140 – 0x143 0x50 VALUE_MONITOR Varies (IEEE-754)
0x144 – 0x147 0x51 SFFT_STEP_TIMER sec (IEEE-754)
0x3F8 MODE 8-bit enum
0x3F9 HALL_IMPOSSIBLE 8-bit unsigned int
0x3FA HALL_SKIP 8-bit unsigned int
0x3FB CONTROL_OVERFLOW 8-bit unsigned int
0x3FC SFFT_STEP_NUMBER 8-bit unsigned int
0x3FD SFFT_TELEM_COUNT 8-bit unsigned int
0x3FE MODE_MONITOR 8-bit enum
0x3FF FRICTION_DONE 8-bit boolean

11.4.1 Command Value
Accessing file 0 causes an extra mode byte to be transferred. By writing to this file the
mode of the wheel can be commanded. By reading this file the current mode can be
determined. The modes are enumerated in section 11.4.32.
If this parameter is accessed through EDAC writes and reads instead of file reads and
writes there is no explicit mode byte transferred. It is possible to read and write the
number associated with the command, but this is not advised.

11.4.2 GROUND
The voltage sensed by the wheel’s ADC when looking at a grounded input. Should be
very close to zero. This is of very little interest outside of anomaly investigation.

11.4.3 VDD
The output of the wheel’s +3.3 V DC/DC converter.

11.4.4 TEMPERATURE
The on-die temperature of the wheel’s processor. This is factory calibrated, and should
be accurate to within a few degrees.

11.4.5 LDO
The output of the wheel’s +1.8 V Low Dropout regulator.

11.4.6 VSENSE
The voltage on the Power In/Out pin.

11.4.7 SPEED
This read-only parameter returns the speed of the rotor.

11.4.8 MOMENTUM
This read-only parameter returns the angular momentum of the rotor. It is derived from
the SPEED multiplied by INERTIA.

11.4.9 SEU_COUNT
This parameter records the number of errors that have been found during EDAC
scrubbing. Any error in a byte is considered to be a single error – no attempt is made to
determine how many bits were flipped.
This parameter can be read to determine the error count. It can also be written – typically
to reset it to zero.

11.4.10 FAULT_STATE
This is 1.0 if the wheel is in a fault state, or 0.0 otherwise.

11.4.11 HALL_DIGITAL
The wheel has three Hall-effect sensors (numbered 0 to 2), each one generating a binary
value. The value of these three bits is encoded into this parameter.

Hall 2 Hall 1 Hall 0 HALL_DIGITAL
0 0 0 0.0
0 0 1 1.0
0 1 0 2.0
0 1 1 3.0
1 0 0 4.0
1 0 1 5.0
1 1 0 6.0
1 1 1 7.0

11.4.12 CONTROL_TIME
This parameter not currently fully functional.

See the CONTROL_OVERFLOW file for indication of negative realtime margin.

11.4.13 SPEED_[P|I|D]_GAIN
These parameters set the gains for the PID closed-loop speed controller. See
CONTROL_TYPE for more information on when these are read-write parameters set by
the user, and when they are read-only and internally generated.

11.4.14 MIN_GAIN_SPEED, MAX_GAIN_SPEED
These read/write parameters bound the speed used as an input to the speed controller gain
formula.
By setting these two parameters to the same value the speed dependence of the gains can
be effectively disabled.

11.4.15 INERTIA
This read/write parameter sets the rotor inertia. It is used to scale between acceleration
and torque, and momentum and speed.

11.4.16 GAIN_SCHEDULE[1..4]
These four read/write parameters are used to set the speed control gains, in those cases
when PROPORTIONAL_OVERRIDE is zero. First, the characteristic speed w is
determined based on the actual and setpoint speeds and on MAX_GAIN_SPEED and
MIN_GAIN_SPEED.

The critical gain and period are modeled as a function of the characteristic speed. The
four GAIN_SCHEDULE parameters are written as G1..G4.

()()MAXMINettactualMAXMIN wwwww ,,, arg=

11.4.17 CONTROL_TYPE
This read/write parameter is used to determine the control type, using the Ziegler-Nichols
method.
The value stored in CONTROL_TYPE is truncated to an integer.
If the value is negative, then SPEED_P_GAIN, SPEED_I_GAIN and SPEED_D_GAIN
are read-write parameters, set by the user.
If the value is 1, a PI controller is used:

If the value is 2, a PID controller is used:

In the case of any other value, a P controller is used:

11.4.18 MAX_SPEED_AGE
This read/write parameter determines which digital Hall sensor transitions are used to
determine the SPEED telemetry. Transitions are discarded if they are older than
MAX_SPEED_AGE in time, if a complete rotor revolution has occurred since them, or if
a rotor direction reversal is detected.
MAX_SPEED_AGE is relevant at very low rotor speeds. A larger value will allow more
Hall sensor transitions to be used, giving a less noisy speed estimate. However, it will
also increase the latency in speed measurements which may cause closed-loop speed
control modes to become unstable.

11.4.19 LIMIT_SPEED1
This read/write parameter sets the maximum speed that closed-loop modes will target.
The magnitude of the speed target used in speed, torque, momentum and acceleration
modes is clamped to this value. This is particularly significant in torque and acceleration
modes – if communication with the flight computer is lost for any reason the rotor will
slowly accelerate until this limit is reached.

3

1

4
2

G

G

GPu
GKu

w

w

×=

×=

0.0

2.1
45.0

=

×=

×=

Kd
Pu

KpKi

KuKp

KpPuKd
Pu

KpKi

KuKp

×=

×=

×=

125.0

0.2
6.0

0.0
0.0
5.0

=
=

×=

Kd
Ki

KuKp

11.4.20 LIMIT_SPEED2
This read/write parameter sets the absolute maximum speed that the wheel can reach. If
the rotor exceeds this speed the fault state will be entered. LIMIT_SPEED2 is active in
all modes, which is significant since LIMIT_SPEED1 is not effective in open-loop modes
(PWM, VOLTAGE, etc).

11.4.21 LIMIT_VOLTAGE
This read/write parameter sets the greatest voltage that can be impressed upon the motor
by the drive stages.
By setting this lower than the smallest expected bus voltage, the wheel behaviour can be
made insensitive to its supply. In this way, the same performance will be achieved with
the spacecraft battery discharged or charged.
Lowering this parameter will also lower the maximum possible speed of the wheel, and
reduce the maximum current consumed in a slew.

11.4.22 PREVIOUS_SPEED
This read-only parameter contains the SPEED file from the previous control frame. It is
expected that it might be used in the future to generate torque telemetry, but at present it
is unused.

11.4.23 SPEED_INTEGRATOR
This parameter contains the closed-loop controller integrator, scaled in amps of actuation.
It is technically a read/write parameter, and it is possible for the user to write this for test
purposes.

11.4.24 SPEED_LAST_ERROR
This read-only parameter contains the controller error from the previous control frame. It
is used with the differential gain term of the closed-loop controller.

11.4.25 ACCEL_TARGET
This parameter contains the speed setpoint used by the acceleration controller. The
controller will add the acceleration to this file each frame. It is technically a read/write
parameter, and it is possible for the user to write this as a way to force a new speed while
remaining in acceleration/torque mode.

11.4.26 TEST_VOLTAGE
This read-only parameter contains test information related to motor drive voltage.
In a voltage controlled mode (such as SPEED) this contains the current motor voltage
setting. It can be used to see the output of the closed-loop controller.
After a MEASURE_FRICTION or MEASURE_STICTION command, this contains the
minimum voltage required to maintain motion, or the minimum voltage required to break
stiction, respectively.

11.4.27 TORQUE_[T0..T4]
These five read-only parameters record the instantaneous torques measured in the last
five control frames. T0 is the result of the most recent control frame. T4 is four frames
old. The torque is computed as:

TORQUE = INERTIA * (SPEED – PREVIOUS_SPEED) * 93 Hz

Torque telemetry at low speed should be used with caution. The speed estimate is only
updated when new hall sensor pulses are seen (or a very long period elapses). If there has
been no hall sensor pulse in the previous control frame then SPEED ==
PREVIOUS_SPEED and so TORQUE == 0.

11.4.28 MODE
This parameter stores the wheel’s current mode. It is more often accessed through file 0,
where the mode and command value can be read or written simultaneously.

11.4.29 HALL_IMPOSSIBLE
This value counts the number of times that a transition to an “impossible” digital Hall-
effect sensor configuration is seen. Impossible configurations are all “0”, or all “1”. This
is an error condition, and would normally indicate failure of a sensor or loss of a rotor
magnet. It is read/write, and can be written as zero to reset the count. The count range is
0..255. If an impossible configuration occurs with the count at 255 it will cycle back to
0.

11.4.30 HALL_SKIP
This value counts the number of times that a Hall-effect sensor pattern transitions to
another pattern that should not be immediately adjacent. Adjacent sensor patterns are
those that differ by only one bit.

11.4.31 CONTROL_OVERFLOW
This value counts the number of control frames where the control algorithm has not
finished processing before the start of the next frame. This is an error condition, and
would be expected to result in poor control. It is read/write, and can be written as zero to
reset the count. The count range is 0..255. If a control overflow occurs with the count at
255 it will cycle back to 0.

11.4.32 SFFT_STEP_NUMBER
This value contains the step number of the current script that is being executed. It is not
intended for this to be written to effect a goto behaviour.

11.4.33 SFFT_TELEM_COUNT
This value contains the offset from the start of the script telemetry at which the latest
script telemetry will be written.

11.4.34 MODE_MONITOR
This value contains the effective mode command that is currently being commanded by a
script. Its value outside of script execution is not updated.

11.4.35 FRICTION_DONE
This Boolean value is used internally by MEASURE_FRICTION and
MEASURE_STICTION modes to signal when the rotor has stopped, or started,
respectively.

11.5 Command Modes
Command
Number

Command Name Command Value

0x00 IDLE Ignored
0x01 PWM Duty cycle (-1.0 to +1.0)
0x02 VOLTAGE Volts (-10 to +10)
0x03 SPEED Rads/sec
0x04 PWM_H1 Duty cycle (-1.0 to +1.0)
0x05 PWM_H2 Duty cycle (-1.0 to +1.0)
0x06 PWM_H3 Duty cycle (-1.0 to +1.0)
0x07 PWM_H4 Duty cycle (-1.0 to +1.0)
0x08 PWM_H5 Duty cycle (-1.0 to +1.0)
0x09 PWM_H6 Duty cycle (-1.0 to +1.0)
0x0A VOLTAGE_H1 Volts (-10 to +10)
0x0B VOLTAGE_H2 Volts (-10 to +10)
0x0C VOLTAGE_H3 Volts (-10 to +10)
0x0D VOLTAGE_H4 Volts (-10 to +10)
0x0E VOLTAGE_H5 Volts (-10 to +10)
0x0F VOLTAGE_H6 Volts (-10 to +10)
0x10 ACCEL Rads/sec²
0x11 MOMENTUM N-m-sec
0x12 TORQUE N-m
0x13 BURNIN Final test step #
0x14 SFFT Final test step #
0x15 LIFE Final test step #
0x16 STORE_FILES 0.0 or 1.0
0x17 DEFAULT_FILES 0.0 or 1.0
0x18 PWM_P0 Duty cycle (-1.0 to +1.0)
0x19 PWM_P1 Duty cycle (-1.0 to +1.0)
0x1A PWM_P2 Duty cycle (-1.0 to +1.0)
0x1B MEASURE_FRICTION Volts/sec
0x1C MEASURE_STICTION Volts/sec
0x1F SOAK Final test step #
0x20 REPEAT Ignored
0x21 COMPLETE Ignored

0x24 AUX1 Final test step #
0x25 AUX2 Final test step #

11.5.1 IDLE
In IDLE mode the motor drive is turned off. If it is spinning, the rotor is free to slow
down under friction.

11.5.2 PWM
In PWM mode the motor is driven with a constant duty cycle. The command may be
between -1.0 and 1.0. This is interpreted as a duty cycle between 0.0 and 1.0, in either
the positive or negative direction.
PWM mode does not use closed-loop current or speed control, so it is not of great use in
spacecraft fine control. However it does allow for extremely high torques (and very high
power consumption!), so it may be used open-loop during slew maneuvers.

11.5.3 VOLTAGE
In VOLTAGE mode the motor is driven with a constant voltage. The desired voltage is
divided by the VSENSE telemetry measurement to determine the PWM duty cycle. This
mode is open-loop, in a manner similar to PWM mode, but has feed-forward
compensation against supply voltage variations.

11.5.4 SPEED
In SPEED mode the rotor speed is servoed to the command value. The closed-loop speed
controller outputs a voltage setpoint, which is in turn used by the voltage controller.

11.5.5 PWM_H[1..6]
In these modes the digital Hall-effect sensors are overridden, and the binary code is set to
the H1..H6 value. Other than that, the mode is identical to PWM mode. It allows a
particular PWM duty cycle to be driven onto a particular motor phase regardless of the
rotor position. The rotor will typically not spin in these modes, but will oscillate about a
particular electrical angle.

11.5.6 VOLTAGE_H[1..6]
In these modes the digital Hall-effect sensors are overridden, and the binary code is set to
the H1..H6 value. Other than that, the mode is identical to VOLTAGE mode. It allows a
particular voltage to be driven onto a particular motor phase regardless of the rotor
position. The rotor will typically not spin in these modes, but will oscillate about a
particular electrical angle.

11.5.7 ACCEL
When not in ACCEL mode, the ACCEL_TARGET file is set to SPEED. In ACCEL
mode, the acceleration command is added to ACCEL_TARGET each control frame.
ACCEL_TARGET is then used as the setpoint for the speed mode controller.

11.5.8 MOMENTUM
In MOMENTUM mode, the SPEED controller is used with a setpoint equal to the
commanded MOMENTUM divided by the INERTIA file.

11.5.9 TORQUE
In TORQUE mode, the ACCEL controller is used with a setpoint equal to the
commanded TORQUE divided by the INERTIA file.

11.5.10 BURNIN
The BURNIN mode starts a test script intended to bring the bearing lubricant to a steady-
state initial condition. Details are TBD.

11.5.11 SFFT
The SFFT mode starts a test script to fully evaluate the health of an integrated reaction
wheel. It concentrates on speed capacity, torque capacity, EMF characterization and
friction characterization. Closed-loop control performance is not investigated.
The test will run for a number of minutes before terminating. All of the result data is
stored in the parameter file. Consult the factory for automated software that will generate
pass/fail reports.

11.5.12 LIFE
The LIFE mode starts a test script intended for long-term operation on a life-test reaction
wheel. Details are TBD.

11.5.13 STORE_FILES
If the STORE_FILES mode is entered with a value of exactly 1.0, all of the parameters
will be stored to non-volatile flash memory. The mode value will be set to 0.0, to
indicate that the write has occurred and to prevent multiple writes. Whenever the wheel
resets it will start with the stored parameters.

This mode does not drive the motor, and is equivalent in that way to IDLE.

11.5.14 DEFAULT_FILES
If the DEFAULT_FILES mode is entered with a value of exactly 1.0 the stored
parameters in non-volatile flash memory are erased. The mode value will be set to 0.0, to
indicate that the erasure has occurred and to prevent multiple erasures. Whenever the
wheel resets it will start with default parameters. This command has no effect on the
parameters currently in the wheel parameter file, only on the parameters after the next
reset.

This mode does not drive the motor, and is equivalent in that way to IDLE.

11.5.15 PWM_P[0..2]
The PWM_P[0..2] modes allow the duty cycle of a particular motor phase (0..2) to be set.
Only the one phase is driven, and none of the phases is connected to ground.

11.5.16 MEASURE_FRICTION
The MEASURE_FRICTION mode should be entered with the wheel spinning, driven in
a voltage-based mode (VOLTAGE, SPEED, etc). The drive voltage is slowly reduced, at
a number of volts/second dictated by the mode value. Eventually the voltage will be so
low that the rotor will stop.
As soon as the rotor speed reads 0.0 rad/sec, the TEST_VOLTAGE parameter will stop
updating. Thus, by reading TEST_VOLTAGE the lowest voltage consistent with
rotation can be determined. The HALL_DIGITAL parameter can also be read, to
determine the electrical angle at which the rotor stopped.

11.5.17 MEASURE_STICTION
The MEASURE_STICTION mode should be entered with the wheel stopped, driven in a
voltage-based mode (VOLTAGE, SPEED, etc). The drive voltage is slowly increased, at
a number of volts/second dictated by the mode value. The sign of the mode value
indicates whether the voltage should become positive or negative.
As soon as the rotor speed becomes non-zero, the TEST_VOLTAGE parameter will stop
updating. Thus, by reading TEST_VOLTAGE the lowest voltage consistent with
breaking stiction can be determined.

11.5.18 SOAK
The SOAK mode starts a test script intended to facilitate the 120 hour high-temperature
burn-in test. It is expected that the electronics unit will be connected to a stator, but there
will not be a rotor. The mode drives current through each of the motor phases in turn and
logs analog telemetry.
Not presently implemented.

11.5.19 REPEAT
This mode exists as a flag within a script, indicating that the script should return to the
first step. It is not a mode that can be usefully commanded by a user.

11.5.20 COMPLETE
This mode exists as a flag within a script, indicating that the script should terminate. It is
not a mode that can be usefully commanded by a user.

11.5.21 AUX1
The AUX1 mode starts a test script to investigate closed-loop control performance
through zero speed crossings.
The test will run for a number of minutes before terminating. All of the result data is
stored in the parameter file. Consult the factory for automated software that will generate
pass/fail reports.

11.5.22 AUX2
The AUX2 mode starts a test script to investigate closed-loop control performance to step
acceleration commands at different wheel speeds.

The test will run for a number of minutes before terminating. All of the result data is
stored in the parameter file. Consult the factory for automated software that will generate
pass/fail reports.

